Effects of real-time visual feedback in the form of a virtual avatar on symmetry and other parameters of gait post stroke

Liu, L.Y1,2., MSc, PT; Sangani, S2., PhD; Patterson, K3., PhD, PT; Fung, J1,2., PhD, PT; Lamontagne A1,2, PhD, PT

1School of Physical and Occupational Therapy, McGill University
Montreal, Canada
email: le.liu@mail.mcgill.ca

2Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital (JRH) site of CRIR,
Montreal, Canada

3Department of Physical Therapy, University of Toronto,
Toronto, Canada

Abstract—Gait asymmetry, one of the hallmarks of post stroke locomotion, often persists despite gait rehabilitation interventions, impacting negatively on functional mobility. This pilot study examines the feasibility and instantaneous effects of real time visual feedback provided in the form of an avatar on gait symmetry. Preliminary results obtained from seven chronic stroke survivors showed no improvements in step length and step time ratios while using three avatar views (back, frontal and paretic side). Improvements in lower limb joint angle symmetry, however, were observed. Faster walking speed and larger paretic step length were also noted during the adaptation and post-adaptation phases. We are currently extending the study to a larger sample to validate the use of real time visual feedback to enhance spatial parameters of gait among stroke survivors.

Keywords—Avatar; cerebrovascular accident; gait asymmetry; virtual reality.

I. INTRODUCTION

Gait dysfunctions are the most reported problems by individuals with stroke [1]. Post-stroke gait typically features spatiotemporal deviations, i.e: shorter (or larger) step length and prolonged swing phase on the paretic side and prolonged stance phase on the non-paretic side [2]. These inter-limb differences are commonly referred to as gait asymmetry [2]. Gait asymmetry can lead to many negative consequences, including poor balance control, gait inefficiencies and decreased overall physical function [3]. Current gait interventions for gait asymmetry cannot demonstrate specificity and effectiveness [4].

In rehabilitation, visual feedback plays an important role in learning the spatial aspects of a motor task [5]. Moreover, visual feedback in the form of biological cues (as in seeing one’s own movements) has shown promising results in motor learning research [6], especially in providing additional and more easily decipherable information about one’s gait pattern. However, whether biological cues as a source of visual feedback has the potential to improve post stroke gait symmetry remains unknown. We propose a new method, with the use of visual feedback provided in the form of virtual avatars displaying participant’s locomotion in real time, to improve gait symmetry and other parameters of gait in people with stroke; (2) to determine which view (frontal vs side vs back) is the most effective in improving gait symmetry; and (3) to estimate the extent of short-term lasting effects on gait symmetry once the feedback is removed.

II. METHODS

A. Experimental design and experimental setup

Prior to the start of the experiments, participants were evaluated on their level of motor recovery using the Chedoke-McMaster Stroke Assessment (CMSA). Gait speed was assessed using the 10m Walk Test. During the experiments, participants were assessed while walking on a self pace treadmill (0.6 m X 1.5 m) (Fig 1). The VE scene, projected on a large screen (2.44 m × 3.05 m) mounted in front of the treadmill, consisted of a long city street with a gender and height matched avatar located 3.5m ahead of the participant. Maya LT™ 2016 (Autodesk, USA) was used to design avatars of similar appearance and anthropometric characteristics to those of the participants. During the experiment, real time limb movements were captured at 120 Hz by a 6-camera Vicon Mx system and Vicon Tracker™ (Vicon Motion Systems Ltd, Oxford, UK) based on the displacement of rigid bodies placed on specific markers on a participant. Right: back (top), frontal (middle) and paretic side (bottom) views of an avatar.

![Fig 1. Left: picture of the experimental setup and placement of rigid body markers on a participant. Right: back (top), frontal (middle) and paretic side (bottom) views of an avatar.](image-url)
IV. Conclusion

While visual avatar-based feedback may not improve the temporal symmetry of gait after stroke, the paretic side view specifically may improve spatial symmetry, as reflected by improved SLR ratios and symmetry of lower extremity joints angles. Walking speed and paretic step length also increased during the adaptation phase. Future study should target the potential benefits of repeated sessions and training for optimal motor learning.

Acknowledgments

We thank Dr. Valeri Goussev for creating the Matlab script needed for the data processing as well as all the participants and staff of the JRH stroke program for their help and support.

References


Acknowledgments

We thank Dr. Valeri Goussev for creating the Matlab script needed for the data processing as well as all the participants and staff of the JRH stroke program for their help and support.

References